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Abstract

Purpose — The purpose of this paper is to present a numerical and an analytical study of the fluid
flow and heat transfer in the unsteady, laminar boundary layer resulting from the forced convection
flow along a semi-infinite wedge, where the transients are initiated at time # = 0 when the wedge is
impulsively started from rest with a uniform velocity and a constant heat flux at the walls of the
wedge is suddenly imposed.

Design/methodology/approach — The velocity of the main free stream is written in non-
dimensional form for ¢ > 0 as u,(x) = x””, where x is the non-dimensional distance along the surface
from the leading edge (apex) of the wedge and the constant # is related to the included angle of the
wedge 78 by m = /(2 — 3)(0 <m <1 for physical applications). The wedge and the fluid are
assumed to be initially (f = 0) at the same uniform temperature 7., so that there is zero heat flux at
the surface. A time-dependent thermal boundary layer is then produced at # = 0 as the zero heat flux
at the surface is suddenly changed, and a constant heat flux ¢,, is imposed as the wedge is set into
motion. Analytical solutions for the simultaneous development of the momentum and thermal
boundary layers are obtained for both small (initial unsteady flow) and large (steady-state flow) times
for several wedge angles (several values of m) and several values of the Prandtl number Pr. These
two asymptotic solutions are matched using two specialised numerical procedures.

Findings — The numerical results obtained for the transient fluid velocity and temperature fields
concentrate mainly on the case when the Prandtl number Pr = 1 and m = 1/5, namely a wedge angle
of 60°. Required alterations to these parameters are then discussed with reference to variations in
Pr and m separately. Further, an engineering empirical expression is presented for the skin friction
Cy()Rel/? that is valid for all times. The comparison between the empirical formula and the full
numerical solution demonstrates that this matching solution can be used with confidence over the
whole range of values of the non-dimensional time 7 for each of the values of m presented, and may
therefore be used with confidence in engineering applications.

Originality/value — The results of the present work, which have been obtained through many
computations, are very important for the advancement of knowledge on this classical problem of fluid
mechanics and heat transfer. It is believed that such very detailed solutions have not previously been
presented.
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1. Introduction

The unsteady nature of a wide range of fluid flows of practical importance has received
considerable attention in recent years. In many applications, the ideal flow environment
around the device is nominally steady, but undesirable unsteady effects arise either due
to self-induced motions of the body, or due to fluctuations or non-uniformities in the
surrounding fluid. Unsteady viscous flows have been studied rather extensively and all
of the characteristic features of unsteady effects are now more or less familiar to fluid
mechanists. Comprehensive reviews of the literature on unsteady forced convection
boundary-layer flows are presented in Riley (1975, 1990), Telionis (1979, 1981), and
Ludlow et al (2000). However, fewer studies have been concerned with the forced
convection heat transfer aspects, see Pop (1996).

The boundary-layer flow along a semi-infinite flat plate that is started impulsively
from rest was first studied by Stewartson (1951), Hall (1969), Dennis (1972), and others.
Extending the work of Stewartson (1951), Smith (1967) considered the impulsive motion
of a wedge and presented an approximate solution that is based on the momentum
integral method. Nanbu (1971) obtained numerical solutions of this problem, using a
scheme similar to that of Hall (1969), i.e. using three independent variables. Williams and
Rhyne (1980) formulated the problem of impulsively set into motion wedge type
(Falkner-Skan) flows in a new set of scaled coordinates. Both the short-time solution and
the solution for infinite time, the Falkner-Skan solution, were included in this new
formulation of the problem. In addition, the new scaling reduced the region of integration
from the traditional infinite region to a finite region, thus also reducing the time required
for numerical computations. Numerical solutions for the forced convection thermal
boundary layer produced by the sudden imposition of a constant temperature difference
between the wedge and the fluid as the motion is started have been given by Watkins Jr
(1976). Very recently, Xu and Pop (2008) have studied the unsteady boundary-layer flow
past a wedge using the homotopy analytic method (HAM). The problem of a wedge
impulsively set into motion and some associated heat transfer characteristics have been
considered by Harris ef al. (2002, 2008).

The purpose of this work is to study the forced convection heat transfer in the
unsteady, thermal boundary layer associated with the forced convection (momentum)
boundary-layer flow resulting from a transient Falkner-Skan problem with exponent
initiated by a sudden change in the thermal boundary condition to a uniform wall heat
flux. This situation has physical relevance when 0 < s < 1, and for such cases the flow
1s that of an incompressible fluid past a sharp, semi-infinite wedge of included angle
2mm/(m + 1). The surface is set impulsively into motion at (non-dimensional) time
t = 0 with a (non-dimensional) potential flow #,(x) = x”. Both the fluid and the
surface are initially at a constant temperature and the transients are initiated when the
zero heat flux at the surface is suddenly changed to a constant value. The initial
(unsteady) development of the thermal boundary layer is satisfactorily represented by
a series solution for small times. Physically, at this stage, diffusion dominates
convection, which is affected only weakly by the velocity components close to the
wedge. The solution for large times (steady state) is given by the Falkner-Skan
equation. For small times the flow is generally independent of the conditions far
upstream, but at the leading edge and for large times the flow depends on these
solutions. The mathematical problem for small times is governed by the Rayleigh type
of equation and for large times by the Falkner-Skan type of equation. The results
obtained for the heat transfer characteristics during the initial and final stages of
the motion are supplemented by a numerical integration of the transformed
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Figure 1.
Physical model and
coordinate system

boundary-layer equations. The detailed numerical solution presented here for the
whole transient from the initial (f = 0) unsteady to the final ({ — oo) steady state
consists of a modification of the step-by-step method proposed by Merkin (1972) in
combination with a finite-difference method similar to that proposed by Dennis (1972),
which has been very successfully used recently on a range of problems by Harris et al.
(1997a, b, 1998, 1999, 2001, 2002, 2008). Particular cases of the present results are
compared with those of Hartree (1937). It may be noted that here the heat transfer
problem is not the same as in other works (Watkins, Jr, 1976; Tsay and Shih, 1979;
Bhattacharyya and Gupta, 1996; Harris et al. 2002), where the thermal boundary layer
1s due to a sudden change in the surface temperature of the wedge. Some recent work
on steady or unsteady boundary-layer flow and heat transfer past a wedge has,
however, been performed by Cheng and Lin (2002), Kuo (2003), and Pantokratoras
(2006). It should be mentioned that the present results, which have been obtained
through many computations, are very important for the advancement of our
knowledge on this classical problem of fluid mechanics and heat transfer. To our
knowledge such very detailed solutions have not previously been presented.

2. Basic equations

The generalized impulsive Falkner-Skan system that we consider is based upon the
problem of the unsteady, two-dimensional, viscous flow of an incompressible fluid past
a symmetrical, sharp wedge with an ¥ and ¥ coordinate system, where ¥ is measured
along the surface of the wedge from the apex and y is measured normal to the surface;
see Figure 1. At time £ = 0, the wedge is impulsively set into motion with a uniform
speed U, along its plane of symmetry in an otherwise stationary, viscous, and
incompressible fluid. The heat transfer problem is idealised as follows. The wedge and
the fluid are assumed to be initially at the same uniform temperature 7, so that there
is zero heat flux at the surface. A time-dependent thermal boundary layer is then
produced at £ = 0 as the zero heat flux at the surface is suddenly changed, and a
constant heat flux ¢, is imposed as the wedge is set into motion. The inviscid flow over
the wedge develops instantaneously and its velocity is given by:

wn - 0. (3) " )




where [ is a characteristic length and m is related to the included angle 3 by
m = /(2 — 8). It is clear that for negative values of 7 the solution becomes singular
at x = 0, whilst for m positive the solution can be defined for all values of ¥, and this
leads to a general difference between the solutions for the cases of m < 0 and m > 0.
The particular cases of Blasius’ solution for a flat plate (3 = 0, m = 0), stagnation
point flow (8 = 1, m = 1), together with the wedge angles 30° (3 = 1/6,m = 1/11),
60° (8=1/3,m =1/5), and 90° (8 =1/2,m = 1/3), will be considered for several
values of the Prandtl number, Pr. We will also consider in more detail the steady flow
case (T — o0), described by the Falkner-Skan equation, for one further value of the
parameter 2, namely m = 2(3 = 4/3), corresponding to a wedge angle of 240°. For
physical applications we require that 0 < 6 <1 (0 < m < 1), since the acute wedge
angle is 7f3, and this upper limit corresponds to 7 = 1. Other values of m will be
considered within the Blasius-like solution range m* < m < oo, where m* is the
minimum value of s for which boundary-layer separation occurs. When m* < m < 0
and m > 1, the situation is no longer physically relevant with respect to the acute,
semi-infinite wedge problem. However, such cases are of considerable mathematical
interest and have intrigued the applied mathematics community for many years.
We introduce non-dimensional variables according to:

x:f, y:Rel/ZX, u:i, v—Rel/zL,
[ l Us Us

ﬁ U kf 1/2 = (2)
e — e, t:_ooi T =R T7T007
u U ] t I e’ ( )

where Re = U..//v is the Reynolds number, # and v are the velocity components along
the x- and y- axes, respectively, T'(x,,¢) is the fluid temperature, v is the kinematic
viscosity, and & is the thermal conductivity of the fluid. The velocity over the wedge,

see Equation (1), is now given by:
o (x) = & (3)

and, sufficiently far downstream from the apex, the governing equations in
the boundary layer can be written in non-dimensional form as (see Harris ef al, 2002,
2008):

ou v

%%—u%—kv%:u%—k@ (5)
ot ox 9y < Cdx 0?2
£+uﬂ+v£:i82—T (6)
ot Ox Oy Proy?’

under the assumption of the boundary-layer approximation and negligible viscous
dissipation. Equations (4)-(6) must be solved subject to the following initial and
boundary conditions:
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HFF u=0, v=0, T=0 forallx,y fort<0,

19,8 oT
= = = = 7
u=0, v=0, a 1 ony=0,x>0 } fort >0 (7)
u—ux), T—0 asy — oo, x>0
1012 The number of independent variables in the governing equations can be reduced from

three to two by introducing the non-dimensional, reduced stream function f{n, 7) and
the non-dimensional, reduced temperature function g(, 7) according to:

1/) = x(MH)/Zf(Ua T)a T = x(lim)/zg(nv T)a n= (m b7z Yy, T= xmilta (8)

where 7 is a non-dimensional similarity variable and 1 is the stream function, which is
defined in the usual way, namely u = o/9y and v = —d/0x. Substituting the
transformation (8) into Equations (5) and (6), we obtain:

fox 1 of ] 0 o)
o "5t S (5)]
B of ] o*f
= {1+(m—1) 577}3'737 9)
10% [m+1 oflog 1—m Of
mop |3 H g |-
B of | 0g
= {14—( - 377} ol (10)
respectively, and the boundary conditions (7) become:
f(0,7) =0, a—f(O, 7)=0, a—g(O,r) = -1,
%(’I’],T)Hl, g(n,7) —0 asn— oo,

for 7> 0.
The quantities of physical interest in this problem are the skin friction coefficient C,
and the non-dimensional wall temperature 7,,(x, ), which are defined as:

G= 0 ) = 0,0, = R T D) - T), (12)

p(te(%))* g

where 7,(X) = 1(0u/0y)|;_, is the skin friction along the surface, p is the fluid density,
and p is the coef‘flclent ofv viscosity. By introducing the non-dimensional variables (2)
and the transformation (8), we obtain:

G =Re 00,1, Tulr) =" (r), )



where g, (1) = £(0,7) and Re, = #,(x)x/v is the local Reynolds number. We shall
refer to 0f/on?(0,7) and g,(r) as the non-dimensional, reduced skin friction
coefficient and surface temperature, respectively.

Attention may now be directed toward finding solutions of Equations (9)-(11). Due
to the difference in the boundary-layer characteristics between the small-time and
large-time solutions, two approximate asymptotic solutions will be sought in these two
time regimes.

3. Small-time solution, 7 < 1

Equations (9) and (10) must now be written in a form that is more convenient for
analysis at small times. In all impulsive changes in temperature or heat flux
problems there is a short period during which the effects are confined to a thin, one-
dimensional boundary layer that is adjacent to the surface. Since the appropriate
length scale for small times is the diffusion scale 7%, we introduce the following
variables:

f=20PR(CT), g=27"G(T), (=5 (14)

Substituting these variables into Equations (9) and (10) yields:

&FF OF) 9°F OF\*

—+ |2+ 4dmTF + 4(m — 1)7? —| =+ dm7 |1 — [ —

8C3+[C+ mrF +4(m — 1)1 87'] 8C2+ mT (8C>

OF| &°F
1 9%G oF| oG OF| 0G
—— 4 |2+ dmTF +4(m— 1) —| = —2G =471 ~Dr—|=, (1
Pr6C2+[C+ mrlF+4(m—1)7 87]8( G T|: + (m )784}87_, (16)
and the corresponding boundary conditions (11) become:
F(0,7) =0, (;—F(O,T):O, Z—G(O,T):—l,

I n =1 Gler) =0 as¢— .
¢

It can easily be verified that the solutions of Equations (15) and (16) at small values of T
(< 1) take the following form:

F(¢7) =R+ RO+ F(O7+ ...,

(18)

G(¢,7) = Go(¢) + GL(O)T+ Go(O) T2 + ...
The solutions for F; and G;, for . = 0, 1, 2,.. ., are determined by substituting these
general forms for F(¢, 7) and G((, 7) into Equations (15) and (16) and equating
coefficients of powers of 7. The first three resulting systems of ordinary differential
equations were solved analytically in Harris et al. (2008) and we will not repeat these
solutions here. Using these analytical solutions, we can write the small-7 solutions for
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the non-dimensional fluid velocity df /dn(n, 7) function and the non-dimensional fluid
temperature g(n, 7) function for Pr = 1 as follows:
OF(¢,7)

m.7) = ¢ g:n/zfl/z_F/ (2 1/2> (2 1/2> é(zﬁm) .
_erf<2 1/2) +m{%< %Z)erf(Zq )erfc(2 ?/2)
2
_[g;—k (1—!-327T> Z}erfc(%) +ﬁ [14_3‘;
+3erf ( 51 /z)} e AT 2?7 (_ g + e_7/2/47'> o /47}

+Fy (2 q/2>7 +. (19)

_ o 1/2 1/2 3/2
g( ) 27'/ G C, {< ,]/27.1/2 2G (2 1/2) / + Gl (2 1/2>T/
5/2
+262(2 1/2>T/ +...
= —nerfc —&-i 712 /4
=N o0 1/2 NG
2 2
n U n 10 n
+m{ {2 <T+2)6rf<27_1/2> +%n<37+2)
4 s 1 1 [ 10
+3ﬁ }erfc(ZTl/2 +\/77 5~ 5x (47 + 1%
—(r+ n2)erf (2 q/z) —%7771/2 6772/47] 7_1/267;2/47}
T s

+262(2 1/2> LLEE S (20)

where the primes in Equation (19) denote differentiation with respect to ¢ = n/27'/%.

The solutions of the ordinary differential systems for the functions F»(¢) and
G5(¢) can be achieved using the NAG routine DO2HAF. This algorithm solves two-
point, boundary-value problems for systems of first-order, ordinary differential
equations using a Runge-Kutta-Merson method and a Newton iteration in a
shooting and matching technique. In this numerical procedure, the upper range of
integration must be specified at some finite value instead of infinity, and we will
denote the values of ¢ and 7 corresponding to ( = co and 1 = co by (,, and 7.,
respectively.

The non-dimensional skin friction coefficient Cf(T)Re}/ 2 = 9% /on?(0, 7) and the
reduced surface temperature g,, can now be expressed as



G2 = 2L 0.7 = 2 O 0y~ L

5772 erra " T m
T (1 + ;T) 1z 4 %FQ(O)#/2 ...,
2u(7) = £(0,7) = 272G (0, 7) (21)
— \/7%7.1/2 + 37:\%/7? {Prl—l L/BP_r(l +Pr)*tan~!
X (JLFE) - 677} -1 +3Pr)}73/2 +2Gy(0)7° + ...,

for 7 << 1, and in the case of Pr = 1 this solution for the reduced surface temperature
takes the following form:

_ 2 g 4m _ 10N 5p 5/2
gw(T)—ﬁT —5—3\/_(1 37‘(’)T +2G(0)7" + ., (22)

forr < 1.

The results for I (0) and G, (0) were presented in Harris e al. (2008) for some
values of the parameters m and Pr, based on specifying the upper range of integration
at the finite value (. =~ 6-8 (dependent on the values of # and Pr).

4. Large-time solution, v — oo

The transport of energy becomes steady as 7 — oo and hence f(7, 7) = fo(n) and
g(n, 7) = 8 (n), say, so that Equations (9) and (10) reduce to the following ordinary
differential equations:

fo+ (m+1)foof" +m(1-f2) =0, (23)
1 1 1 / 1 A _
ﬁgm + E(m +1)foc8l — 3 (1=m)f gx =0, (24)

which must be solved subject to the boundary conditions:

flom) =1, gw(n) =0 asn— oo,

where primes now denote differentiation with respect to 7.

The stream function f,(n) is the well-known Falkner-Skan solution and the
properties of this solution, as a function of the parameter m, have been discussed in
numerous papers; see, for example, Lin and Lin (1987) and Harris et al. (2008). The
limiting value m = m* = —0.0904285623 determines the value of m at which the
laminar boundary layer breaks away from the surface, so that f (0) = 0 at m = m*.
The variations in the solutions for the non-dimensional skin friction coefficient 7. (0)
and the reduced surface temperature g.. (0) in the case of m — (m*)* have been
described in Harris et al. (2008) for different values of the Prandtl number Pr. Here we
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consider solutions for f (0) and g, (0) over the range m* < m < co and separately
consider the cases of m — (m*)™, |m| < 1,and m>> 1, for different values of Pr.

4.1 Steady solution as m — (m*)"

The behaviour of the non-dimensional skin friction coefficient /7 (0) in the vicinity of
m = m*, with m > m*, was investigated by Hartree (1937) and the discontinuity
m = m* (at which £..” (0) = 0) was shown to be approached as O(m — m*)". The
series solutions of the ordinary differential systems (23)-(25) in powers of (m — m*)"?
then provide the following expressions for the steady-state, non-dimensional skin
friction coefficient and reduced surface temperature:

Cr(T)Re}/* = £1(0) = £ 1(0) (m — m*)"* + O(m — m"), (26)
8u(7) = §50(0) = g2 0(0) + g5 1 (0)(m — m*)* + O(m — m"), (27)

asm — (m*)" (see Harris et al., (2008). As presented by Hartree (1937), the figures for
the non-dimensional skin friction coefficient and the reduced surface temperature, as
functions of m, for values of m close to m* have two branches, reversed flow
corresponding to points on the lower branch and arising from the negative square root
in Equations (26) and (27).

4.2 Steady solution in the vicinity of m = 0
The solutions of the ordinary differential systems (23)-(25) in the vicinity of m = 0
(Blasius problem) have the following form:

=S Rt gel) =S (28)
=0 =0

By substituting these expressions into the systems (23)-(25) and equating coefficients
of powers of m, we obtain ordinary differential systems governing the solutions for the
coefficient functions /2 0 ;(n) and g :(n). The first three pairs of the resulting coupled,
ordinary differential systems areas follows

fO/// + fO 0// _ 07 (29&1)
i on } 0 0 _ 0 20h
Prgoo,o + f Ogooo foc OgooO - ( )
O%fll/ 1 ( 0// +f0// ) _fO 0}(0// og/()z =0, (30&)

;rgf?o/& +5 (fo Ogoo 1 +fo%,1goo,,0) 3 (fo%iogoc,l +fooo/,1g£o,0)

+ ifo%.()goc,,o + éfogfoggo,o =0, (30b)



n " ! ! 1 "
fO (f Ofo +fo(i1 0/ fO/ 002)+§<0(c)> 0 JrfO// 001)
=212 =0, (31a)

1 1
Prggcﬂz +5 (fo ogooz +fo?:,lggé,l +fo%72g2<£,0) ) (fo%foggoﬁ +fo?af1ggql

1
A0 0) g (20 +7018%0) + 5 (P2l s +721g,) =0, (31b)
which must be solved subject to the boundary conditions:
200 =0, fY(0)=0, g24(0)=-1, g2;(0)=0, g,(0)=0,
Flom) =1, fLhm) =0, flhn) =0, g(n)—0 asn— oo,

for 7 = 0, 1, 2. It should be noted that the above equation satisfied by ffo_o(n) is the
well-known Blasius equation. '

The steady-state non-dimensional skin friction coefficient and reduced surface
temperature are given by:

(32)

Cr(m)Rel/? = f1(0) = £20(0) -+ mf-L" (0) + m?£2%(0) + O(m?), (33)
2u(7) = 8x(0) = goo,o(O) +mg> 1(0) + m goo,z(O) +0(m®),  (34)

in the vicinity of m = 0, where:

01(0) = £2(0) = 0.3320573,  £2/1(0) = 2.0029918,  £2(0) = —5.2648717,
(35)

and the values of g2 (0),¢2,(0), and g2 ,(0) presented in Table I(a) have been
calculated by solving the ordinary differential systems (29)-(32) using the NAG routine
DO2HAF for different values of Pr. These solutions are based on specifying 7., = 12,
and were found to not significantly change for any larger value of ... We notice that
the value of £ (0) coincides with that obtained by Blasius; see Lin and Lin (1987).

Pr
0.72 1 2 5 10
(@) g° 0(0) 2.4397885 2.1787905 1.7207877 1.2639406 1.0021208
g8071 (0) —3.0495140 —2.8617963 —2.4639423 —1.9682219 —1.6350249
gi)z (0) 18.9541781 17.8572698 15.5333986 12.5974804 10.5810448
(b) Z.0(0) 0.6949205 0.5969811 04370114 0.2950445 0.2223738
8001(0) 1.862452 1.654616 1.298038 0.9505707 0.7535070
Z..2(0) —1.236922 —1.096505 —0.8633464 —0.6429276 —0.5178323

Notes: (a) 2 ((0),8%,(0), and g2 ,(0), which occur in the largetime solution (34) for the
reduced surface temperature in the - V1c1n1ty of m=0; 0b) 850(0),851(0), and g, 2(0), which
occur in the large-time solution (43) for the reduced surface temperature for m > 1
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19.8 For large values of m, the solutions of the differential systems (23)-(25) have the
’ following form:

= m71/2 Zfoo,i(ﬁ)miiv 8o (77) = m1/2 ng,i(ﬁ)m7i7 7_] = Wll/z??- (36)
i=0 i=0
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By substituting these expressions into the systems (23)-(25) and equating coefficients of
powers of m, we obtain ordinary differential systems governing the solutions for the
coefficient functions f ., ;(7) and g, ;(n). The first four pairs of coupled, ordinary

differential equations:
o+ a 5f 0 0+ 1 =T =0, (372)
1 1/
Pgoo0+ f Ogjoo0+f000g060 _O (37b)

focl+ (f Of 0+f000fool+ ooofool)*zfoo,ofoo,lzoa (38a)

1 - _ - _ -
Prgool +5 (f Ogoc 0 f;o,()goo,o +f000g:>ol +f:>c,0goo,1

o8+ Frcale) =0, (38b)

-

+} (.}?oc 0]-” 1 +.}?ZC Oj?oo,l +.}?oo,0]?,9/072 +f;o_0foo,2 +]?oo,1.]?go71)
_2foo()f002 fooli ’ (39&)

1
PgochF (f Ogool f ogoo1+f OgoonFf/ ogooz+foc1goco

_f;x;,lgoo,O +foo,1goo,1 +f:>c,1goo,1 +foo,2goo,0 +f0c‘12goo,0> = 07 (Sgb)

fl0l;3+ (fOO 2+fl 0f002+f Of 3+f ()foo3+foclf 1+f001f002
+foo,1foo-2 _ZfJoo.Ofoo,S_zfoo,lfocz:O? (40a)

1_ 1 - - - -
ﬁggC,3 =+ é (foo,Og;oz _fooﬁogoo,Z +foo,0g:)c,3 +foo,0goo,3
+foo18 ol _f;o,lgoo,l +.}-0071§;o,2
+}Joo,lgooﬁ2 +foorBlen _}cio,Zgoo,O + foorBre

+/2Joo,2g0071 +]?oc,3§;o,0 +f:>o,3goo70> = 0’ (4Ob)



where primes denote differentiation with respect to 7, must be solved subject to the
boundary conditions:

Fai(0) =0, FL(0)=0, 2 40)=0, g ;(0)=-1,
g,,20)=0, g 30)=0,

Froo@ =1, Fror@) =1, Fos@—1, fisld) —1,
B —0 as 7— oo, (41)

fori =0,1,2,3.

The above ordinary differential Equation (37b), subject to the associated boundary
conditions (41), compn'sing the problem for g, ((7) clearly has an infinite family of solutions,
since if £, o(7) is one solution then so is ag. ¢(77), where @ is an arbitrary constant. In a
similar manner to the problem described in section 4.1, by additionally requiring that the
ordinary differential system (38) subject to its associated boundary conditions (41) is soluble,

a unique solution for g, o(7) can be achieved, although the resulting solution for g, ;(7)
will not be valid. The NAG routine DO2HAF can now be used to solve the ordinary
differential systems (37)-(41), although the solutions for g, 5(77) will not be valid.

The steady-state non-dimensional skin friction coefficient and the reduced wall
temperature are given by:

d2 50 — _1/9F
Ci(rRel2 = LI e o) 4127 (o)

ap |,
+m L 4(0) + O(m52), (42)
8u(T) = 800 (0) = m'°25(0) + m™°g1(0)
g 5(0) + O(m ™), (43)

for m > 1, where:

/!

froo(0) =1.1930434, f._(0) = 0.0391436, £.. ,(0) = 0.0005789, (44)

and the values of g, 1(0),£.1(0), and g, »(0) are presented in Table I(b) for different
values of Pr. These solutions are based on specifying 7., =~ 9-13 (dependent on the
value of Pr), and were found to not significantly change for any larger value of 7.

4.4 Steady solution for m* < m < oo

To describe the large-time, steady-state solution to the transient heat transfer problem
described in this paper, we are mainly concerned with the Blasius-like solutions to the
system (23)-(25). As explained in this section, such solutions exist for m* < m < oo
and the NAG routine DO2HAF can be employed to numerically determine the complete
behaviour of the non-dimensional skin friction coefficient and the reduced surface
temperature over this range. These Blasius-like numerical solutions, together with the
solutions exhibiting regions of reversed flow near to the surface, are compared to the
various asymptotic behaviours derived in sections 4.1-4.3 in Figure 2, for different
values of the Prandtl number Pr. The value of 7, at which the boundary conditions
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Figure 2.

The variation of 7 (0)
with m, and g, (0) with m
at different values of Pr

k.
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-0.09
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Notes: (a) Close to the value m = m*, with the dotted line representing the m — (m*)*
solutions (26) and (27); (b) over the range m* < m < 0, with the dashed lines showing
the second branch of g (0) corresponding to reversed flow cases (the " (0) variation has
not been presented for clarity); (c) in the vicinity of m = 0, with the dotted and dashed lines
representing the two- and three-term, respectively, approximations (33) and (34); and (d) for
large values of m, with the dotted and dashed lines representing the two- and three-term, re-
spectively, approximations (42) and (43)

(25) that are valid as 7 — oo are to be applied depends crucially upon the chosen value
of m, particularly near to »* and for the reversed flow cases.

Figure 2(a) shows the behaviour of f” (0) and g, (0) as m — (m*)", where m*
defines the point at which the boundary layer breaks away from the surface. As
discussed in section 4.1, the numerical solutions for m* < m < 0 have two branches,
the reversed flow solutions corresponding to those branches existing over the range
m* < m < 0only. As in similar physical situations, we postulate that the upper branch
solutions are physically stable and occur in practice, whilst the lower branch solutions
are not physically obtained. This postulate can be verified by performing a stability
analysis but this is beyond the scope of the present paper. The expansions (26) and (27)
are valid as m — (m*)" and have been presented in Figure 2(a) using the first two
terms, namely the terms up to O(m — m*)l/ 2 with the term of O(m —m*)® in



Equation (26) being identically zero. The two-term approximations are only valid over
avery small interval of m values as m — (m*)™.

For all values of the Prandtl number, Pr, the value of g, (0) rapidly increases along
the upper branch of the solution curves shown in Figure 2(a), and this rapid increase
occurs nearer to m* as Pr increases. Corresponding to the remainder of the displayed
reversed flow solution branch for £ (0) over m* < m < 0, a further branch of solutions
for g (0) exists. This branch of solutions for g (0) has only been displayed in Figure
2(b), together with the other solutions over the range m* < m < 0. The majority of this
branch of solutions correspond to the interesting cases in which the surface
temperature is negative, but all are characterised by the existence of a negative
temperature somewhere within the fluid.

Figure 2(c) shows the variation of 7 (0) and g, (0) in the vicinity of 7 = 0 in
comparison to the two- and three-term expansions (33) and (34). The three-term,
quadratic approximations to the behaviour of £ (0) and g (0) are only graphically
indistinguishable from the corresponding numerical solutions over the interval |72 | <
0.035, although they slightly extend the range of validity of the linear two-term
approximations.

Figure 2(d) shows the variations of /7 (0) and g, (0) at large values of m in
comparison to the two- and three-term large-m expansions presented in Equations (42)
and (43) for the non-dimensional skin friction coefficient and the reduced surface
temperature, respectively. It should be noted that the one-term solutions provide a
reasonable approximation to f (0) for m > 5, but are relatively poor for the displayed
interval of m values when the g (0) solution is considered. A significant improvement
in the validity of the large-m approximation is observed when the second and third
terms in each expansion are included. In the approximation for f! (0), the two- and
three-term expansions (42) are graphically indistinguishable from the corresponding
numerical solution for m 2 0.25. In the approximation for g, (0), the three-term
expansion (43) provides a graphically accurate representation for m 2 8, and again
provides a better approximation than the two-term expansion.

4.5 Large-time fluid velocity and temperature profiles

The large-time, steady-state profiles of the non-dimensional fluid velocity function f,
(n) and the fluid temperature function g, (n) are presented in Figures 3 and 4 for
different values of 7 and Pr. The Blasius-like numerical solutions to Equations (23)-(25)
have been presented in Harris et al. (2008) for a variety of values of m over the range
m* < m < 2, and the effect on the steady-state fluid temperature profiles of changing
Pr from 1 to 10 has been considered. The effect of varying Pr, at a constant value of m,
1s further illustrated in Figure 4. The reversed flow cases are shown in Figure 3 for four
values of m within the range m* < m < 0. For the reversed flow cases, there is a
significant increase in both the thermal and the velocity boundary-layer thicknesses,
and the value of 7, must accordingly be increased when calculating such numerical
solutions. Three distinct types of non-dimensional fluid temperature profile exist, all of
which maintain the boundary condition g, (0) = —1. Firstly, for the reversed flow
cases corresponding to the upper solution branches in Figure 2(a) that exist for a small
range of values of m > m*, solutions for g, (1) exist in which the fluid temperature is
positive for all values of 1 and monotonically decreases with 7 through the thermal
boundary layer. However, the surface temperature rapidly increases with s until the
further branch of solutions presented in Figure 2(b) is reached. The second type of non-
dimensional fluid temperature profile is now obtained, and these correspond to cases in
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Figure 3.
Large-time, steady-state,
non-dimensional
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(n)

foo

(i) Pr=1

Notes: The curves for Pr = 5 when m =-0.07, and Pr =5 and 10 when m = -0.01 could not
be calculated as these lie in the region between the two branches of the reversed flow
solutions presented in Figure 2(b)

which the surface temperature is negative and the fluid temperature is negative for all
values of n. Due to the boundary condition at the surface, a local minimum in the fluid
temperature occurs within the fluid. Finally, as m continues to increase, the surface
temperature becomes positive, and there is a region close to the surface within which
the fluid temperature remains positive.

The Blasius-like, large-time, steady-state profiles of the non-dimensional fluid
temperature g, (n) are presented in Figures 4(a)-(c) for m = m*,m = 1/5 and m = 2,
respectively, at the five values of Pr = 0.72, 1, 2, 5, and 10. Figure 4 demonstrates that
an increase in the value of Pr leads to a reduction in the surface temperature and, as
expected, a decrease in the thermal boundary-layer thickness. For the Blasius-like
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® ©

= =

8 21
@14 =
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Notes: (a) m=m*; (bym=1/5;(c)m=2

solutions, the corresponding non-dimensional fluid temperature profiles for other
values of m show the same tendencies and, therefore, have not been presented here.

5. Numerical solutions

Initially the transient effects due to the imposition of a constant heat flux at the surface
are confined to a thin fluid region near to the surface and are described by the small-
time solution developed in section 3. These effects continue to penetrate outward
through the initial boundary layer and ultimately evolve into a steady-state flow. In
order to match these small- and large-time solutions, we now develop a numerical
solution of the governing boundary-layer Equations (4)-(6).

The evolution of the pairs of functions 0F/9¢, G and 0f/0n,g are separately
governed by the pairs of coupled partial differential Equations (15), (16) and (9), (10),
respectively, which are each parabolic and thus can be integrated numerically using a
step-by-step method similar to that described by Merkin (1972), provided that the
coefficients of 0°F /0¢0r, 0G /0T, 9*f | onoT, and Og /Ot remain positive throughout the

solution domain. This marching method enables the solution at time 7 = 0, described
by the functions:
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Figure 4.

Large-time, steady-state,
non-dimensional fluid
temperature g (n)
profiles at different
values of Pr
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Fy(¢) = erf¢,
1 _Pre
— Cerf ( Pr ) B S 4

Go(¢) = —(erfe( VPr¢ T (45)
obtained from the analytical solutions to the first ordinary differential system
associated with the expansion (18), for ¢ > 0, to proceed in time. For m > 1, this
forward integration can be continued toward the steady-state solution profiles.
However, for m < 1, the marching method only provides a numerical solution for
7 < 7, where 7, is the time at which the above-mentioned coefficients first become
negative in the numerical procedure. The value of 7; will be approximately equal to the
precise time 7, at which these coefficients first change sign at the outer edge of the
boundary layer, namely:

T, R, =, (46)

for m < 1. Physically, as well as mathematically, when # < 1 we would expect that
7+ =1/(1 —m), since for 7 < 1/(1 — m) the disturbance from the leading edge has
not been felt. The disturbance travels fastest at the outer edge of the boundary layer
and, therefore, it is first encountered at such locations when 7 = 1/(1 — m).

The application of the step-by-step scheme to Equations (15) and (16) enables the
accurate evolution of the fluid temperature and velocity profiles to be determined over
a developing boundary layer whose width increases with time. If (., and 7., are
interpreted as being finite values of the spatial variables at which the associated
boundary conditions are to be applied, then at the exact time 7 = (100 /2(0 )? we must
transfer to the step-by-step scheme applied to Equations (9) and (10). We again adopt
the notation 7, to denote the corresponding value of 7 that is actually reached in our
numerical techniques.

In order to accurately evaluate the initial evolution of the non-dimensional fluid
velocity function ®(¢, 7) = 0F /9¢(¢, 7) and the fluid temperature function G(¢, 7) we
apply the direct, forward-integration scheme to the integro-differential form of
Equations (15) and (16), following the formulation described in Harris et al (1997b,
1998, 1999, 2001, 2002). The finite spatial domain is divided into N¢ equal grid
spacings of length 46 = (. /N¢ and a variable time step is used. To accurately describe
the initial evolution, the time increment A7y at time 7 = 0 is set to some prescribed
small value and subsequently a time step doubling procedure is adopted to reduce the
computations at later times. Based upon the fluid velocity and temperature profiles at
the final time 7, reached in this numerical scheme, we now apply the step-by-step
method to Equations (9) and (10) and continue toward the steady-state solution or the
time 7, = 1/(1 —m), according as to whether 7 >1 or m <1, respectively. The
numerical formulation used in the papers by Harris et al (1997b, 1998, 1999, 2001,
2002) is employed, based upon N equal grid spacings for the spatial discretisation.

In the cases for which m < 1, at the time 7 = 7} the forward-integration approach
breaks down and the coefficients of 9?f/0ndr and 9g/0r in the governing Equations
(9) and (10), respectively, are tending toward negative values as 1 — oo. Based upon
the profiles 9f/0n(n, ;) and g(n, 7;) at this time and the asymptotic steady-state
profiles f (), f2, (), and g, (1), defined as the solution of the system of Equations
(23)-(25), we complete the numerical integration and derive a solution over 7, < 7 < oo
by adopting a matching approach. The matching technique originated by Dennis



(1972) has been successfully applied by the present authors to some related heat
transfer problems; see Harris ef al (1997a,b, 1998, 1999, 2001, 2002), wherein
comprehensive details of this iterative approach are presented. In the finite-difference
approximation to Equations (9) and (10), we replace the time derivatives within the
terms 9%f /OnoT and Og/Or by either a backward or forward difference, depending on
whether their coefficient 1 + (m — 1)79f/0n is positive or negative, respectively, to
achieve a convergent solution using standard iterative techniques. At some large, but
finite, time 7 = 7., the solution is given by the steady-state analysis. The value of 7,
may be varied, but must be taken to be large enough for any further increase to have a
negligible effect on the whole solution for 7 < 7 < 7.

6. Results and discussion

In the discussion of the parameters within the numerical procedures for determining
the transient fluid velocity and temperature fields that follows, we illustrate the results
obtained by concentrating mainly on the case when the Prandtl number Pr = 1 and
m = 1/5, namely a wedge angle of 60°. Required alterations to these parameters are
then discussed with reference to variations in Pr and m separately.

6.1 Results for Pr =1 and m = 1/5

The restriction to a finite-dimensional ¢ space was achieved by taking (., = 8 for
Pr = 1 and m = 1/5, and thus the precise time at which the transfer to the step-by-step
method in 7, 7 variable takes place is 7, = 0.5625, taking 7., = 12. The effect on the
forward-integration numerical schemes of increasing the values of (., and 7, whilst
keeping the corresponding spatial mesh sizes ¢ and 4", respectively, constant, was
investigated and it was concluded that the results for the non-dimensional fluid
velocity and temperature profiles, together with the evolution of the non-dimensional
skin friction coefficient, were graphically indistinguishable from those presented in the
figures within this paper.

The first time increment A7, was assigned the value Ay = 10719 and the adopted
time step doubling procedure was successful in increasing this time step (or any
smaller initial time step) to A7 = O(107°) at the non-dimensional time 7" &~ 1.25,
namely the time of termination of the forward-integrating procedure, over the
complete range of spatial grid sizes described below. The numerical value of
Moo = ZCDO%,%/ = 11.99981 was obtained, based upon the time 7,, = 0.56248 of transfer
between the step-by-step methods in the ¢, 7 and 7, 7 variables.

The most significant source of variation in the numerical solutions for the non-
dimensional fluid velocity function 9f/dn(n, ) = OF/0¢({(n,7),7) and the fluid
temperature function g(n,7) = G({(n,7),7) arise by considering changes in the
number of grid spaces N¢ and N" associated with the step-by-step methods in the ¢, 7
and n, T variables, respectively. In Tables II(a) and (b) we present both the numerical
solutions (see section 5) and the small-time approximations (21) for the non-
dimensional skin friction coefficient C;(7)Re/? and reduced surface temperature
2,(7), respectively, in the case of Pr = 1 and m = 1/5, with some of the results in
Table II(a) being in accordance with those presented in Harris et al. (2002). These tables
illustrate the effect of refining the spatial grid from N = N¢ = N7 = 100 to 6,400 grid
spaces, corresponding to reducing 46 = 2/3h" = 0.08 to h¢ = 2/3h" = 0.00125, by
repeatedly doubling the value of N. It is observed that, as N increases, the initial
development of the numerical solution approaches that of the appropriate small-time
solution.
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Table II also includes results obtained from the matching numerical procedure, for
which the value of 7., ~ 12 is maintained, a value which has been shown to be both
valid for 7 < 7, and as 7 — oo. The restriction to a finite temporal domain requires
that the final, steady-state profiles be enforced at the finite value 7= 7,
corresponding to 7 — oo. The solutions for the non-dimensional skin friction
coefficient and the reduced surface temperature have been observed to smoothly
approach their steady-state solutions when 7, is imposed at 7., = 8, for Pr = 1 and
m = 1/ 5, with no significant improvement in accuracy when 7., is extended beyond
this value. This fact is further demonstrated in Table II by the very close agreement
between the matching solutions achieved using 7, = 5 and 8. The temporal domain
from the time of termination 7, of the forward-integrating approach to 7, is divided
into 992 and 1,786 increments for 7., = 5 and 8, respectively, both corresponding to a
time step of approximately 0.00378. For the finest spatial grids, computational
limitations make the investigation of finer temporal grids a very time consuming
process, and the use of more than 1,786 temporal grid increments for a spatial grid of
N = 1,600 when 7., =8 is believed to provide results that will be graphically
indistinguishable from those achieved with such a discretisation. The convergence of
the iterative scheme is described by the approach of the average absolute error over the
solution domain to a specified error tolerance. Due to the slow convergence of this
numerical procedure, the error tolerance is made small, namely 5 x 1071°, and the
solutions produced by more restrictive tolerances are graphically indistinguishable
from those presented here.

For the example of Pr = 1 and m = 1/5 shown in Table II, the times at which the
third term in the small-time solution (21) begins to influence the result presented are
7 = 0.01 and 0.04 for the non-dimensional skin friction coefficient and reduced surface
temperature, respectively, while the times at which these small-time approximations
begin to become invalid are around 7 = 0.1 and 0.6, respectively.

Table II demonstrates that, at later times in the transient process, the differences in
the results obtained using the different spatial grids are less significant. The solutions
achieved using all of these grids are almost graphically indistinguishable at any time
value through the transient process. For all but the coarsest spatial grids, the solutions
are all seen to smoothly approach the predicted steady-state value of the non-
dimensional skin friction coefficient, both for 7., = 5 and 8, with the extension of 7
beyond 5 having almost no effect on these matching numerical solutions. Note that the
matching solution was not calculated for » = 6,400 as it was computationally very
expensive. However, for the non-dimensional reduced surface temperature, the
extension of 7, from 5 to 8 has a more significant influence, and this latter value of
Too = 8 has therefore been used for the figures presented in this paper for Pr = 1 and
m = 1/5.

The slight improvement in the accuracy that is achieved as N increases from
N = 1,600 to 3,200 and 6,400 is not justified by the additional computational time
required. The efficiency of this numerical procedure enables solutions to be achieved
relatively rapidly using 4¢ = 2/3h" = 0.005, and, therefore, this value has been used
for all of the remaining results presented in this paper, so that NV = 1,600.

Figures 5(@) and 6(a) show the variation of the non-dimensional fluid velocity
df /On(n, T) and the non-dimensional fluid temperature g(n, 7) profiles, respectively, at
various times 7 through the transient process, calculated for Pr = 1 and m = 1/5. The
analytical expressions for the small-time solutions, namely the first two terms in
Equations (19) and (20), have been included in these figures for the time periods over
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and (d) 5 of the indicated times. The ultimate steady-state solution of the system (23)-(25) dimensional time 7

is represented by dashed line; (a) m = 1/5; (bym = 1; (¢) m = 2; (d) m = m*

which they provide a good approximation to the numerical solutions, and for the case
of Pr = 1 and m = 1/ 5 these approximations remain valid up to 7 ~ 2. The final,
steady-state profiles, as predicted by Equations (23)-(25), are also included in Figures
5(a) and 6(a), and the numerical profiles evolve monotonically from 7 = 0 toward these
steady-state profiles.

Figures 7 and 8 show the evolution of the non-dimensional skin friction coefficient
Cf(T)Re}C/ 2 and the reduced surface temperature g, (7), respectively, for the case of
Pr = 1and m = 1/5. The numerical, transient solutions are shown in Figures 7(a) and
8(a) to develop closely following the small-time solution (21), and both the two- and
three-term solutions are almost graphically identical to the numerical solutions for
7< 1.15, as is expected from the results presented in Table II. The one-term, small-time
solutions provide an accurate approximation to the numerical solutions only over a
relatively limited initial time interval. The transient, numerical solutions for Cy()Rel/?
and g,(7) determined using the matching method, continuing from the forward-
integrating solution, have also been included in Figures 7 and 8, respectively. In
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Figure 6.

The profiles of the non-

dimensional fluid
temperature g(n, 7) at
different values of the
non-dimensional time 7

(a) (b)

g(m7)
-"ﬁ"
i e
53
g (1, 7)

7= 0.01,0.02,0.05,0.1,
0.2,0.4,1, 2.002, 4.001

o 7= 0.01,0.02,0.05,
\ 0.1,0.2,0.4,1,4,10

72 0.02,0.1,0.4,0.7, 1.539,

= (.01,0.02,0.05,0.1, 1.5
7 0%, 0.02, 005 0.2 4028, 13.360, 50,688, 150.229

0.2,0.4, 1,5, 50.003

Notes: The first two terms (up to O (7*2)) in the small-time profiles (20) are represented by
dotted lines for the times at which they remain accurate, namely the first (a) 8, (b) 7, (c) 6,
and (d) 5 of the indicated times. The ultimate steady-state solution of the system (23)-(25) is
represented by dashed line; (a) m=1/5; (bym=1;(c)m=2;(d)m=m*

addition, Figures 7(b) and 8(b) display the approach of the transient, numerical
solutions toward the corresponding large-time, steady-state value predicted in Table
III(a). For the case of Pr = 1 and m = 1/ 5, the solutions for the non-dimensional skin
friction coefficient and the reduced surface temperature approximately reach their
steady-state values at T ~ 2.5 for C;(1)Rel/? and 7 ~ 4 for g,(7), from a graphical
viewpoint. The three-term small-time solutions are again included in Figures 7(b) and
8(b) to further demonstrate the ranges over which the initial and final asymptotic
solutions can be applied. It should be noted that Figures 7(b) and 8(b) have been
presented using a logarithmic horizontal axis to enable the solutions discussed in
section 6.2 to be directly compared.

Finally, in order to be applicable to practical engineering problems, we consider the
simple matching solution developed by Harris et al. (2002) for the non-dimensional skin
friction coefficient. Although these matching solutions are not unique, it is sometimes
convenient, for engineering purposes, to seek a closed form approximate solution that
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Notes: The symbols x in (a) indicate the times 7 and 7 at which the transfers between
the numerical solution techniques described in section 5 take place. The empirical
approximation (47) is presented for each value of m using the symbols o; different values
of m in comparison with (a) the small-time solution (21), using one (long-dashed line), two
(dotted line), and three (dashed line) terms, (b) the three-term small-time solution (dashed
line) together with the predicted large-time, steady-state value (dot-dash line),
see Table ITI(a)

may be used with confidence over the whole time interval range of interest. The
matching function for the non-dimensional skin friction coefficient has the following
form (see Harris et al., 2002):

1/2
Cf(T)Re}C/Z = \}%71/2 [ﬂ(foﬂc (0))27' +exp(—aiT — 717'2) / , (47)
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Figure 7.

Evolution of the non-
dimensional skin friction
coefficient Cy(r)Re/? for
different values of m
presented with a
logarithmic horizontal

T axis
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Figure 8.

Evolution of the reduced
surface temperature g, (1)
for different values of m
when Pr = 1 presented
with a logarithmic
horizontal 7 axis
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Notes: The symbols x in (a) indicate the times ¥and 7, at which the transfers between
the numerical solution techniques described in Section 5 take place; different values of
m when Pr = 1 in comparison with (a) the small-time solution (21), using one
(long-dashed line), two (dotted line), and three (dashed line) terms, (b) the three-term
small-time solution (dashed line) together with the predicted large-time, steady-state
value (dot-dash line), see Table IIl(a)
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The comparison provided in Figure 7(b) between the empirical formula (47) and the full
numerical solution for the non-dimensional skin friction coefficient Cr()Rel/
demonstrates that this matching solution can be used with confidence over the whole
range of values of 7 for each of the values of m presented, and may therefore be used
with confidence in engineering applications. A similar empirical formula was derived
for the non-dimensional reduced surface temperature, but the transition from the small-
time solution (21) to the steady-state solution was not as accurately modelled by this

approximation, and therefore these results have not been presented.

6.2. Solutions for other values of Pr and m

As Pr and m were varied from Pr = 1 and m = 1/5, the only parameters within the
numerical procedures that required changing from the analysis in section 6.1, i.e. those
parameters that produced any significant change in the solutions presented within the
figures contained in this paper, were the values of 7, and 7... The values stated below
are sufficiently large for any further increase to produce results that are graphically
indistinguishable from those presented in the figures. These increases in the values of
7o and 7, reflect increases in the thermal and velocity boundary-layer thicknesses
and the time required to reach a steady-state solution, as appropriate.

For Pr =1, further numerical solutions were determined for the cases of
m =m*,—0.05,1/11,1/3,1, and 2, with necessary increases in 7., for m = m* and
—0.05 to 7, = 15, resulting in a necessary increase in N to N = 2000, thereby
maintaining the same value of the spatial grid increment for the step-by-step solution
procedures. For m > 1, the forward-integrating approach does not break down, and
therefore the matching numerical approach is not required. It should also be noted that
the time at which the steady-state solution is reached has increased for m = 2 in
comparison tom = 1.

The value of 7., = 8 was used for m = 1/11 and 1/3, thereby requiring 1,825 and
1,720 temporal grid increments, respectively, according to the value of 77 ~ 1/(1 — m)
and for the same time step discussed in section 6.1. However, the value of 7, had to be
increased for the chosen values of m < 0 and the matching numerical procedure
required a significant increase in the computational time necessary to satisfy the
convergence criterion. Accordingly, for m = —0.05, the value 7., = 12 and 2,923
temporal grid increments (again maintaining the time step used in section 6.1) were

m
m* —0.05 1/11 1/5 1/3 1 2
(@)
720 00 0.2134837 04837449  0.6213238  0.7574476  1.2325877  1.7150680

g (0) 34351892 23941161  2.0091890 19108082  1.8450971  1.7529551  1.7774736

(b)
Pr
0.72 1 2 5 10

8 (0) 21544588 19108082  1.4902233  1.0804608  0.8502618

Impulsive
Falkner-Skan
flow

1033

Table III.

The predicted steady-
state values of the non-
dimensional skin friction
coefficient

Cr(T)Re/* = 7 (0) and
the reduced surface
temperature

Guw(T) = g5(0), which

Notes: (a) different values of m when the Prandtl number Pr = 1; (b) different values of the are valid for large values

Prandtl number Pr when m = 1/5

of 7
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used to produce the results presented in the figures. For m = m*, the results presented
here have been based upon 7., = 200 and 3,200 temporal grid increments (a time step
of approximately 0.06221 that is significantly larger than that used in section 6.1); this
calculation required a significant amount of computational time, namely of the order of
7,000 hours on a 2.66 GHz Intel Xeon processor. However, even for this intensive
calculation for the case of m = m*, this value of 7, does not lead to a completely
smooth approach to the predicted steady-state values of the appropriate quantities, and
a value of 7, beyond which a negligible effect on the numerical solution is observed
may be beyond reasonable computational limitations if an accurate temporal grid
increment is to be maintained.

As described in section 6.1 for Pr = 1 and m = 1/5, the numerical and asymptotic
solutions for the non-dimensional skin friction coefficient and the reduced surface
temperature are presented in Figures 7 and 8, respectively, for the cases of m = m*,
—0.05, 1/11, 1/3, 1, and 2, when Pr = 1. As for the case of m = 1/5, the range of
validity of the one-term, small-time solution (21) is significantly improved when either
two or three terms are used in this approximation. As s increases above m = 1/5, the
range over which the corresponding small-time solutions are indistinguishable from
the numerical solutions decreases. For m* < m < 1/5, these three-term solutions are
all valid until 7 ~ 1-2, but this upper limit is significantly reduced to 7 ~ 0.15 for
m = 2. As described above, for m = m*, the value of 7, could not be taken sufficiently
large for the steady-state solutions for the non-dimensional skin friction coefficient and
the reduced surface temperature to be approached smoothly. However, the large-time,
steady-state values presented in Table III for Cf(T)Re,l/ 2 and g,(7) are approached
smoothly for the presented cases of m # m*.

The evolutions of the non-dimensional fluid velocity and temperature profiles for
the cases of m = 1, m = 2 and m = m*, when Pr = 1, are presented in Figures 5(b-d)
and 6(b-d). The profiles for m =1 and m = 2 are similar in nature to those for
m = 1/5, being mostly plotted at the same time instants as those for m = 1/5. The
clear differences are the expected reduction in the thermal and velocity boundary-layer
thicknesses as m is increased from m = 1/5 to 2, and the significant increase in the
time taken to reach the steady-state profile for the case of m = 2. The corresponding
solution profiles for m = m* are significantly different in nature and reflect both an
increase in the thermal and velocity boundary-layer thicknesses, and again a large
increase in the time taken to reach the steady-state conditions.

In order to demonstrate the influence of the Prandtl number on the solution of this
problem, the evolution of the reduced surface temperature g,, (7) has been presented in
Figure 9 for Pr = 0.72, 1, 2, 5, and 10, when m = 1/5. Precisely the same numerical
solution parameters as those described in section 6.1 for Pr = 1 were used in each case,
except that for Pr = 10 it was necessary to change 7., to 7o, = 12, and correspondingly
increase the number of temporal grid increments to 2,845 to maintain the same time step
size. For each value of Pr, the reduced surface temperature is presented in comparison to
the one-, two-, and three-term small-time solutions (21) and the large-time solution
presented in Table III(b). In general, the inclusion of the second and third terms in the
small-time solution (21) for the reduced surface temperature are each observed to extend
the upper range of validity of this approximation. As Pr increases, so does the time 7
taken to reach the steady-state solution for the reduced surface temperature, and the
small-time approximations break down at an increasingly smaller proportion of the total
transient time. The equivalent profiles to those shown in Figures 5 and 6 for Pr # 1 are
similar in nature and, therefore, have not been presented here.



225
2 B Pr = 0.72
21
/ o Pr=1
175 /‘f‘ y 4
Pr=2
e,
= Pr=5
Pr=10
o+
0 1 2 3 4 5 6 7 8

T

Notes: The symbols x indicate the times 7and 7 at which the transfers between the
numerical solution techniques described in section 5 take place; surface temperature
evolution is in comparison with the small-time solution (21), using one (long-dashed
line), two (dotted line), and three (dashed line) terms, and the predicted large-time,
steady-state value (dot-dash line), see Table III(b)

7. Conclusions

Detailed solutions for both the momentum (Falkner-Skan) and heat transfer (energy)
equations in the unsteady, laminar boundary-layer flows past a semi-infinite wedge
have been presented, where the unsteadiness was caused by the impulsive motion of
the free stream velocity and by the sudden change in the surface heat flux. Small-time
(initial unsteady flow) and large-time (steady-state flow) analytical solutions have been
presented, but, since these approximations rapidly build up in complexity, the majority
of the solutions have been obtained numerically. The partial differential equations
governing the flow and heat transfer have been solved numerically using an implicit
finite-difference scheme as proposed by Merkin (1972), and for the situations in which
this forward-integration approach breaks down at later times the numerical solution
has been completed using the matching technique of Dennis (1972). The analytical time
series solutions that are valid for small times may be used to check the results derived
in the early stages of the time-dependent integration, and/or even to commence the
integration. Further, this investigation has also focussed on investigating the fluid flow
and heat transfer developments at large times, namely when the skin friction
coefficient and the surface temperature have closely approached the values that they
would assume at an infinite time (steady-state flow and heat transfer).
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Figure 9.

Evolution of the reduced

surface temperature g, (7)
for different values of the
Prandtl number Pr when

m=1/5
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